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Aberdeen Proving Ground,, Md.
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iii DATA REDUCTION FOR THE FREE FLIGHT SPARK RANGES

ABSTRACT

The data reduction process for the Free Flight Spark Ranges is described
with emphasis on recent modifications. The most important modification which
is that of swerve reduction is treated in some detail. Criteria for quality
of results are discussed and a table of time required for present machine data
reduction routines is included.
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INTRODUCTION

One of the basic problems of the free flight range technique is that of
data reduction. This is partly due to the fact that in range work the actual
motion of a missile in flight is observed, and the aerodynamic forces and
moments are inferred from this motion. Due to its importance for the inter-
pretation of range firings, the cumbersome nature of the analysis actually
limits the output of the ranges, For this reason a great effort has been
made to refine the whole process and to make as much use of large scale com-
puting machines as possible.

One book [1] and two reports [2] , [3] have described most of the phases
of such an analysis which now is somewhat out of date. This report will
attempt to describe completely the present data reduction with an emphasis on
points which were not covered in previous publications.

The report will be divided into five sections:

1. Determination of atmospheric conditions and the geometrical motion.

2. Drag and roll reductions.

3. Yaw reductions.

4. -Swerve reductions.

5. Criteria for quality of results.

DETERMINATION OF ATMOSPHERIC COI'ITIONS AIM GEOMETRICAL MOTION

Before discussing the necessary measurements and computations we will
first describe the two Free Flight Spark Ranges. A more complete description
may be found in [11]

The first range to be put into operation was the Aerodynamics Range.
Through it models with body diameters or fin spans up to 57mm are launched
from a variety of gius and are observed by as many as 46 spark photographic
stations located over a 285' portion of the trajectory. Figure 1 shows the
range as seen from the gun position. The cylinders on the left are spark
boxes which provide a spark of less than one microsecond's duration. The
missiles will normally pass inside the brass frames on the righu and trigger
the spark either electrostatically or electromagnetically. Photographic
plates placed on the steel supports of each station then record the shadow
"Of the missile directly, and indirectly by means of the mirrors. Figure 2
illustrates this arrangement. At up to twelve stations, the time intervals
between spark discharge can be recorded to a least count of 5/8 microsecond.
'The stations are surveyed to a positional accuracy of .01 inch and an angiIar
accuracy of 3 minutes.

The Transonic Range is shown in Figure 3. It observes 680 feet of tra-
jectory, contains 25 spark stations and can launch missiles up to eight inches

S~5



in diameter. Its instrumentation is complicated by the introduction of a
second spark and also cameras which record the shadows cast on 12' and 15'
beaded motion-picture type screens. In Figure 4 the geometrical details
of a spark station are shown. Due to the greater distances involved and
increased light required the sparks are about two microseconds in duration.
Spark interval timing pulses can be recorded at sixteen stations . The
surveyed distances in the Transonic Range have an accuracy of about .01'.
An angular accuracy of 6 minutes of arc is obtained.

a. Atmospheric Conditions

For theoretical considerations it is necessary to know the velocity
of sound and density of air. It is attempted to keep them constant through-
out the observed trajectory by air conditioning in the Aerodynamics Rhnge and
by complete insulation and heating in the Transonic Range, Before each firing
the temperature, pressure, an4 relative humidity are measured. From the
temperature it is then possible to calculate the velocity of sound in dry air,
VSD, by the relation

VSD 65 .75 (1)

where VSD is in feet/sec; T is the temperature in degrees Kelvin.

In [141 the following small correction for humidity is derived:
PS- (1 + 14W Vs (2)

where Pw is pressure of water vaporI

P is total air pressure

Due to the presence of water vapor the calculation of density is of some
interest. If P is the total pressure, Pa the partial pressure of water vapor,
by use of Dalton's Law of Partial Pressure we can write:

P=r +P
a w

But if we assume the perfect gas law, this can be written as

P IMPa + w

where the densities, p.,are for the same temperature, T, but different pres-
s' respectively. We now refer pa, p to standard con-sures, namely P, Pal

ditions To of 00C and Po of atmospheric pressure;

1 This pressure is easily calculated by means of the relative humidity and
tables of water vapor pressure for saturated air.
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To Pa T 0 Pw

0 0

T~ P-PuT

Pýao7 0 -o aT0P

ao To

[P -( ao1W (3)

Pao T0 _

Equation (3) together with the known values of P and .37830o Pao

now allows us to compute air density from measurements of P, T, and Pw"

b. Plate Measurement and Geometrical Calculations

On both ranges the z axis points down range frorm the gun, the x axis
to the left looking downrange and y -axis up. Each station has a local origin
located on the intersection line of the planes of either the photographic
plates for Aerodynamic Range or the screens for the Transonic Range so that
its -r plane contains the sparks 1 .

ll" x 141 plates are employed on the Aerodynamics Range and are measured
on ruled grids set in light boxes. Figure 5 shows part of a plate including
a fiducial bar with three nicks. The edge of the bar is parallel to the
z axis and the x,y plane is located by the nicks. Knowing the distance from
the -edge of the bar to the local z axis we can therefore make measurements in
the local coordinate system. The actual measurements taken are the location
of a reference point on the shadow's axis and the slope of the axis with
respect to the fiducial bar.

On the Transonic Range the usual plate size is 4". x 5"1. These are
usually measured pn Mann Comparators (Figure 6) or a Telecomputing Telereader
(Figure 7). The Telecomputing equipment, which is operated by the Measurement
Analysis Branch of the Computing Laboratoiy, has the desirable characteristic
of IBM card output. Since only positions-may be measured by the Telereader,
the slope of the axis is obtained by the measurement of two points on the
shadow's axis. Figure 8 is a sample plate from the Transonic Range 2 . Measure-
ments are made with respect to the crossqd survey wires and are converted to
distances on the screen by means of a magnification factor. These results are
then transformed to the coordinate system formed by the intersection of ex-
tensions of the screen. For both ranges, therefore, the measurements can be

1 On the Aerodynamics Range both the actual spark and its virtual image in
the mirror are considered.

2 Since the camera is focused on the screen, the clear image is of the shadow
while the blurred image is of the missile itself.

/7



reduced to locations of points on the shadows of the missile's axis and the
slopes these shadows have with reference to a station coordinate, system,
The problem is, then, to derive from these data the missile's location and
orientation in space at'each spark station.

Since the sparks are located in each station's xy plane, they have
coordinates (Cl , C2) 0) for the spark opposite the vertical plate and

-l',62, 0) for the other. (On the Aerodynamics Range the second spark

is actually a virtual spark which is located behind-the mirror). If we
denote the coordinates of'the shadow of the reference point (xR, yR' zR) byZ V'v) npat by(XI, O, Z)onpte

(0, z on the verical plate and by 0, on the horizontal plate,

points on the line between the sparks and respective shadows must satisfy the
following equations:

x- Y YV Z - Z(

cl -0 o2V-, o = zV

,-0 Z (5)

1 xH c - OH

Since the reference point must lie on both lines we have the following
four equations for the three coordinates of this point 1

-R + RX YR(6

YR Yv + Ry XR (7)

Zv

where

1X 1c t Xs ,\

2 2

"r c2 , YRyuI. =1 1YV

1 The system is overdetermined because the lines are restricted by the
asrimiption that they inters,-;ct- ,The survey-.and measurement accuracy
iiia 'be checked by a comparisop:,_- -the two -values-of'z,
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If we denote the direction cosines of the missile's axis by (m, n, p)
then the equations of planes containing the missile's axis and the shadow
of the reference point on the vertical and horizontal planes respectively
arel:

X C y-c 2  z 0

0- c Yv " '2 7- o , (10)

m ni p

x - c1 ' y - c2  z - 0

X, cl 0 0 0c2c 2 - =0 (n0)

m n p

If tan V is the slope of the shadow of the axis on the vertical plane,
the point (0, yV + tan V, zV + 1) is a point which satisfies equation (10).

If tan H is defined similarly, the point (xV + tan H, 0, zH + 1) lies in plane

described by (11). After a few algebraic manipulations. these equations
reduce to

mlP= tanH - n/c- - lc'+2 tan
m/p~tnH-n - x~ / H j 12

n/p tan V + m/{ Y-2 -y./Cl ÷ tan (13)

and m2 + n2 + P2 (14)

1 These determinants are the scalar triple products of the vectors (x - cl,
y - c2 , z - 0), (0 - Cl, YV - c2 ' zV - 0), (m, n, p) and the vectors

(x - cl 1 , y - 02', z - 0), (xH - Cl', 0 - c21, z1 H - 0), (m, n, p) re-

spectively. Since scalar triple products represent the volumes of the
boxes formed with the three vectors, these quantities will be zero only
when the point (x, y, z) lies in the plane determined by the vector
(mi, n, p) and either the vector (0 - Cl, 0 - c20 zV " 0) or the vector

(• - cl,, o -02,,.P - o)1

_______________



From (12) - (14) m, n, and p may be determined. If L denotes the distance
between the reference point and the center of mass (xcm$ ycm' zcm)$ then

Xcm = XR + mL + xi
i (15)

Ycm = y- + nL + yi

Zcm =zR + pL+zi

where (xi, yi, zi) are the coordinates of the local origin of the ith station

relative to a fixed origin. The computations described by equations (6) - (15)
have been coded for the Crdwac and the IBM CPC for measurements obtained by
Kann Comparator or light box. At the present time the card output of the
Telereader can be processed by only the Ordvac.

Finally it is necessary to compute the two components of the yaw from the
direction cosines. The yaw angle measured in range work is defined to be the
angle from the tangent to the trajectory to the missile's axis. For the flat
trajectories encountered in spark range work and, for small yaws this can be done
by the use of the simple relations:

dv
dH - (16)

"V n - (17)

where X is horizontal component of yaw in radians

X is vertical component of yaw" in radians

d' is "horizontal slope" of trajectory

Sis "vertical slol i" of trajectory
dz

For hand reductions b and may be computed by differencing values of x and

y between successive stations. As co.ed for the Ordvac the stations are civided into
four or five groups, and for each group x and y are fitted by a quadratic

dx dyfunction of z. From these resulting equations • and may be obtained.

1
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DRAG AND ROLL REDUCTIONSI

a. Drag Reduction

The drag force as measured along the trajectory is defined to be pd 2uD,

where p is the air density, d the missile's diameter, u1 the component of the

missile's velocity, uRresolved along its axis of symmetry, and X% its drag

coefficient. If we assume a flat trajectory directed along the z axis)

u - for small yawing motion, and

mu =-pd u (18)
du z.I

If we define u' as here p is non- dimensional

dud dz u'U (19)uz HE - _d

and2

U m•DK "D (20)

Since distance, not time, is a more fundamental and convenient measure-
ment in range work, the distance is taken to be the independent variable. 'it.
has been found that a cubic equation in distance fits the timing data quite
well and for this equation we have

tua. + a + a2 p 2 3 (21)
dz

c1 ' = dI
dz a- d'

d 2 (22)

S+ 2 a2p + 3 a 3p

pd3 u

M 2a, + 6a3 p2a 2 6a) 2(23)

pd a a1 +2%P +3a 3P

1 The drag reduction is also described in [1] , [21,[3] , and [43 while a
detailed description of the roll reduction is in [10]

2 K's will always be relatod to J s by Kpd Ji
11 m
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From equations (22), (23) and the velocity of sound we can compute the
Mach number and its associated drag coefficient. For the greatest accuracy
we normally evaluate both at the center of the observed trajectory.

Equation (21) is written on the assumption that t can be represented
1by a cubic in z. It is known, however, that KD is a function of 62, the

squared magnitude of the yaw, and M, the Mach number. Although the Mach
number variation on the range is usually small, the yaw can undergo large
changes. Therefore, a yaw drag reduction was formulated by E. J. McShane C13.
We will describe a modification of this reduction. First the assumption is
made that JD is linearily dependent on 82 and M:62JD 2 D(4

D JD + (u - ) (2V

} wh_.ere J-o' and JM are constants.
Vo

Substituting (24) in (20) and integrating,

p
u f J~r. dp

0 00
- e

UO

P pP

:lJ P+ 1o 82 dp+ 1 M o (u'( u o) dP+ Do P+JD 82 VS JDM

[p 12 0

We now replace the quadra't1c term by 1 JD 2 p2 where JD is an average vJ.ae
1 dt dt

of the drag coefficient. Using the fact that dt - (d),, integrating

and rearranging,
d 3 33

(26)
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I(P)S f 02 dpdp
P 0P

P • p dp
o P 1%PI

12 (p)u J (-..()d dp dp

0 ) ,

Assuming that u can be approximated IV (22),
u - u o* L .( - 1 1 . . .')...

a al

- 2a 2

"- - 12a2 312 (p) . • P

For convenience we select jD to be the value supplied by the standard'.

drag reduction, namely - . Therefore

d2 3 d
i . %. to~~t+ L_. p + L. ÷d%(D"••) '÷d D2I(p

0 U U JDo + D ( JDU2 - P)
w e e - d '(261)

where M- is the average Mach number since p to selectect tobe

zero a~t the middle of observed trajectory.

It now remains to evaluate 11(P).

In [1] or [51 , it is shown that for a symmetrical missile the total
yaw ) can be written as

XH + A K 1 e (- I '+ 1 -2+ 2-)P+,
where Ki are complex consta•nts

ai are real,constants 
:il • are real linear functions of p t.Xh R is the "yaw of repose" and is determinod by a yaw reduction as V

:• ~described in the next section 
•if X n:s sm.all,,.

I 2 a X - I2 e'2alp + K202 a"2a2P, 20K2K .'(a, + a-)p

o [r (28)

hore. o K Ko 13

I 
o



If (28) is placed in the definition of I, and the indicated integrations
are performed, there resultsl:

1 (P) - 2l2  e e2ap -l + 2lp] + K02 e2'2P -1+ 2p +

K (2al)2 (2a2)2

-- ec + - Cos

-rrcos (T + }(29)

wherE r a I(2 ' -1)2 + (al + a)2

Y a V20 -' 1o - 2 11ý

= arc cos - arc sin
r r

The procedure for yaw drag reduction is first to perform a standard
drag reduction in order to obtain values of J• and M which together with
an estimated JD determine the cubic coefficient. A least squares is thenM d d.d
run for the remaining unknown coefficients, to, o O Jo and

P u0 'u D Zo~d - JD C)
If J is not fixed, a least squares fit of five parameters can be attempted.

-DM 2
This latter procedure has been ineffective up to the present time

The variation of drag with yawing motion for a group of identically
shaped models fired at about the same Mach number can be determined rather
simply, however,, from the standard drag reduction, We assume that their
individual drag coefficients are average JD's, over the length of observed
trajectory. Eq. (24) can be written in the form

D D o ÷ D 2 (20 2

1 T~Ie cosine term is integrated as though #' were constants.

2 This yaw drag reduction has been coded for the Bell Relay Computer by
J. Schmidt and L. Schmidt.

14
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where L 82 dp (mean squared yaw)

PF is p coordinate of missile at the first timing station

PL is p coordinate of missile at the last timing station

The value of 68r is a by-product of the first integration involved in
obtaining Eq. (29):

8 1 l2 ( ealpF ;2a1PL ) + Kg ;e2 aF _ 2 a2PL

where the integral of the cosine term is neglected for the usual large
values of PL - PF encountered. The drag coefficients for each round are

then plotted against the corresponding values of the mean squared yaw. A
line is fitted to these points and good determination of % and K. 2 for
the common Mach numbers can be made. 0 8

b. Roll Reduction

The equation of rolling motion for a missile with rotational synmetry
may be written in the form [10] :

1-2 AV v -Dv+k, a Dv
0

where v (30)u

9 is roll angle

w! axial angular velocity -2
k-2 A ̂ A

D = JD A' D- Dk+ JA

k -2 .42 (k, is axial radius of gyration in calibers)

m = mass

A - axial moment of inertia

and KA and KA are defined by the relation: axial aerodynamic moment -

pd3u2 [KA KA]

15



The solution of (30) can be easily obtained and is

0 - B + sp + AeDp (31)k-2j
where s - DA (steady state roll per caliber)DI

For range work the roll angle may be measured by means of two pins of different
shape, in the base of the missile (see Fig. 8). The location of these pins in
space may be calculated by use of a slightly modified center of mass reduction
coding and the orientation of the vector between the pins then provides the
roll angle.

If D is sufficiently small 1 the exponential may be expanded as a cubic in
p and the standard drag reduction coding which is available both on the Ordvac
and the Bell Computer can be used to fit 0 as a function of z. In general,
how~ever, a new reuaction procedure is required. Furthermore since the unknown
coefficient D appears in a non-linear fashion the iterative method of differ-
ential corrections is needed.

In order to start the iterations a set of initial values is a prerequisite.'

To do this we differentiate (31) and use the result to eliminate the exponential:

S-(B - )+ sp + 10 (32)

0 can be computed by numerical differentiation using first differences and
equation (32) fitted by ýhe routine least squares since it is linear in un-
knowns (B - S), s, and U. From these B, s, D follow arid by use of (31) for

a particular station, A is determined.

From equation (31) a relation in the differential corrections of these
values can be derived:

ýG = 0observed - computed a AB + pAs + OP nA + Ap eDp ,D (33)

O is computed from (31) by use of the initial computed values of A, B, s, D or
the values obtained from the preceding iteration. Since (33) is linear in the
correction, ordinary least squares apply and a set of corrected coefficients is
obtained. If the initial values are close enough, the process will converge.
Most rounds require no more than two iterations. The complete roll reduction
is coded for the Ordvac while the iterative process of (33) is coded for the
Bell Computer.

1 This is the case for bodies of revolution.
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In [16] the variation of KA and KA with Mach number !:,considered.
0

There it is shown that KA can be quite well approximated byr an inverse

linear function of Mach number* For simplicity we will make the quite
* reasonable approximation that D itself is such a function.

D. - (a + bM)

Now from Eq. (22) it is easy to show that a good approximate relation be-

tween Mach number, M, and position on range, p, is

M = M o(l - JDP)

SFrom these equations we have

D Do
= I+ yp

where Do U (a + bMo)-I (value of D at p 0)
"_JD

Y a
+ 16 o

The further assumption that the ratio of k.I JA to D is a linear functionS~of M or p must now be made,

2lA -A D(s + sIp)
0

From these assumptions the following revised Eq. (30) results

= I o ( V -s 0sp) 
o s

I -Yp

This can be integrated to

0 B + sp + Cp2 + Aef(p) (31)

where f(p) ÷+D0o ln(!4+ y p) Ep(l- + 3 -• ... )

"17



I50+
C! S1 D

0

E y + D

By- use of Eq. (31') we can now modify Eqs. (32) and (33).

9.(B -) + (s )p + Cp 2 + T , (32')

where f'. W EI 1 - YP + (Y P)2 - ( P) 3 "*' " E

A9O =AB + pLs + p2 AC + ef(P)A +Aef(P)p(l - + + r-)AE

-Aef(P)EP•{- +v - .- *JI (33')

I The procedure is quite similar to the regular roll reduction. First B,
s, C , and E are calculated from Eq. (32') by a least squares fit. These are
placed in Eq. ( 31t) together with e and p at the station for which p = 0
and B is computed. Next y is either estimated or computed from Eq. (31') for
a station at which p is large. Finally Eq. (33') is employed in as marn
iterations as necessary for complete convergence. The problem as it is being
coded for the ORDVAG will have the option of fixing y (Ly a 0) or allowing
it to vary. This reduction then will be either a five or six unknowns problem.
Recent experience with small light finned missiles definitely shovathe need for
this modified reduction.

YAW REDUCTIONI

For missiles possessing angles of rotational symmetry less than I2800 and
planes of miiror symmetry, the definition of the linearized force and moment
system is well kntown [1] , [9] . If the requirement o: mirror symmetry is
relaxed slightly2 we have the spin producing moment JAoof equation (30), [10]
If in addition to this we assume either a slight c~onf-iurational asymmetry or
slight mass asymmetry [13] , the transverse force and moment definitions
receive a constant missile-attached force and moment increment. In the theo-
retical development of [9] the usual coordinate system' is orientated so that
the one axis lies along the missile's axis of symmetry, the two axis is in
the horizontal plane pointing to the right and the three axis is determined
by'the right hand ru),e. This selection of the 2 and 3 axes is the exact re-
verse of the orientation of the ranges x and V axes. Since, however, the yaw

1 In order to understand fully the next two sections, they should be read in

conjunction with [9]

2 In other words the assumption is made that the differential canting of

fins of a finned missile affects only the axial moment,

18



as defined in [9] is measured from the missilefs axis to the tangent to
the trajectory, the reverse of the range definition, we have X2  X and

X Vwhere 12' X are the yaw components of [9] The aerodynamics3 V wee½ 3
force and moment acting perpendicular to the missile's axis can now be
defined as:

F U1 ~~~~1ý ivK.~X+(K Ee6F2+iF pd. 2 ul F ~ N (34-)

142+ V1 pd. U, 2 [(..VKT -iK.M)X, + (-K + ivKXT)ýt + iKM 4 X e1

p
where 8 f vdp + 0 (roll angle with respect to force due to asymmetry)

0od
V --

(01(, w2, cw) angular velocity vector

X - X +ix 3 (complex yaw)

c cod
1 a - + i - (non-dimensional angular velocity)

X 6 magnitude of asymmetry angle

KN Normal force coefficient

F, M4agnus force coefficient

KS Damping force coefficient

K•F Magnus force coefficient due to cross spin

KT Magnus moment coefficient

KM Overturning (or righting) moment coefficient

KH Damping moment coefficient

KXT Magnus moment coefficient due to cross spin

K Normal force coefficient due to small asymmetry

KMi Moment coefficient due to small asymmetry 1

I In the case of mass asymmetry on36 the product K X has meaning and

can be computed from the physical measurements of the projectile. This

remark, of course, also applies to the product K-X-

19
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It is easy to see that the exponential coefficients of KN and KM perform

the task of insuring that the force and moment associated with the asymmetry
be missile-attached.

The equations of motion which can be obtained from the above definitions
for flat trajectories are:

S+ VH-i• k + M-M T) G +J• e (3

A

where

H L JD + k2 ' H ~L=N JD
- A

VV

B transverse moment of inertia

M -k2 F+V2k,2 J.12M-2 [JM v. Jr)
T - J L -kl'• J T

T2 -2 k 2  -T
L B N k 2 M~

- •2 (k is transverse radius of gyration in calibers),

The solutions for these equations of motion can be written for the case
of slowly changing spin as 2

X K, e 010 l P +' Vý + K2 e _2P' +~ O P 2~ ++X+K?'e (36)

whereI

- I -al. + i( d + 1 [ /2f H1 + ireato + 2i s2T-H-D)1 l/].
0

pA A)]I1

-aýP + i( 20 p +12ý fHD1 + i

I0
1See Eqs. (8,) and (U1) of[ 9] .For the relation defining K 3 see [13]
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=-L Kd -k2  + ;2 T) F + J -1V'2  1' -_D k H1.
,• :" Mu2

;i " + 2(2T.H-D)2]

-- 2 _ .2

K1 and K2 are complex constants depending on initial conditions

K, a i 2 -- aK e V30 );K0ral

[-a, + i(' -v)] [-a + ( v] 30eK rea

if we differentiate and add the definitions for the exponents in Eq. (36)
and equate the real and imaginary parts, 1

"4 + 2 ,where + . to p+

H,, (ol+ a2 ) -Del (38)

iNext-we differentiate and subtract the definitions

+'21; (21-11-^D)] 1/2 = (a, a (2) + i({ I

"2 2
q - - a - .. (39)

. -((2T-H.8) a -(a, - a2) (•"- •' (ho)

Inserting the definition of T in (39) and using' (37) and (38),

Ma V; - aja2 +j D (a,~ + -ý D4)- (h1)

Equation (40) can be solved for T:

2) ̂

Although, as we shall see, D can be computed from the yaw reductions, the

resulting values are sometimes quite bad due to experimental limitations.
For use in Eqs. (38), (41) and (42), b should either be estimated or
directly measured by a roll reduction.
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It remains to compute & 1 from its definition. But this can be done

by means of equations (36), (39) and (40).

(~ I2 [(r 2 -( -)2]+2(l- -2)

1) 1~ V21

V2 1 2 (al - ad'2

Al - 2

, cL, Vt, h are quantities which are obtained in the curve fitting
I p~roc~ess to -be dsrbdshoýrtly. By means of 'equations (37). (3651 (41)5

and (43), the spin ;, and three combinations of aerodynamic coefficients
SM, H, and T may be calculated. Although KM can be directly obtained from M,

an independent 'evaluation of K is required in order to obtain KH and KT from

H and T respectively. The variation of the turning rates is caused physically
by the change in v and M during flight. Using equations (30), (37), and (41)
we have

A +t

D a. - (44)

V1 V2+ i V;

Symmetrical (Epicyclic) Yaw Reduction

We will first discuss the reduction process for a symmetrical missile.
XK K• X= N K3 = 0). This yields a rosette or epicyclic type yawing

motion. Fig. 9 shows the yawing motion of a spinning body of revolution
with negligible yaw of repose and Fig. 10 dispilays that of a rapidly spinning
finned missile.

The first step in this reduction is the calculation of the yaw of repose.
For velocities greater than 600 ft/sec .I, a good approximation from its

"d .efinition can be obtained from equation (36) and is XR = "• . All the
R Mu2

quantities in the above relation are either known quantities or may be quite
easily estimated. Of course once initial values of i are obtained, equations

(37) and (41), neglecting the effect of ;,may be used. The yaw of repose is
real and negative for positive spins which means that the misiiles will tend
to point slightly to the right of the trajectory. 2

1 Range firings are usually restricted to velocities greater than this value.

2 It should be remembered that the positive real axis has been selected to
point to the left.
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This computed value of XR is then subtracted either numerically or

graphically from the measured X1's and the resulting yaw values plotted in

groups of five or six stations. For these groupswhich cover about 15% of
the total length of observed flight, the effects of damping and change in
turning rates are assumed to be negligible. (Ci 0 = 0 The points

should then satisfy equations of the form

x "R a K, e 0 + VO (P-Po + K20 e () (46)

where ie ; Kio real

Po is value of p for middle station of group. Multiplying by e

eW(p+-O ) (+ (VO-')(P-Po)
e 0 (X - XR)" KlO e 0 o e

This can be done quite easily by use of a compass since this multi-
plication is equivalent to rotation of the yaw anýle at p through the angle
4' (p-po). Should V1 be so guessed that it is quite close to the local,

slow rate the above equation reduces to the equation of a circle:

2i0  VýO~0 -l 40+ 01 42
e ox - Rx K1o e + K20 e (48)

This trial and error process can usually be done quite quickly and the
completed solution is sha..m in Fig. 11. Note that V1'0 can be obtained

from the position of the points on the circles. If the vioIs obtained for

adjacent groups with due care for multiples of 3600 are considered, some-
what more accurate values of V Is may be computed for the midpoint of the

interval between them. If these values for all of the groups are plotted
against p, estimates of V can be made by Ase of a straight line fit.

Finally the Kio's are plotted on semi-log paper against p and ai can be

determined from the slope of a fitted straight line.

From theiabove brief description, it can be seen that first values of
the four initial constants KioV, iols for the range origin, and the six
parameters iia In and 1 may be determined. It is now necessary to apply

An interesting variation of this process which makes use of an analogue

computer is described in [71]
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the method of differential corrections which was first described for the
roll reduction. The equation for the differential correction and the re-
suiting normal equations are given in [3] and [81 .1 This ten unknown
yaw reduction has been coded for the Bell Relay Computer, Eniac, Edvac and
Ordvac.

If a roll reduction has been done, much additional information is avail-
able for the yaw reduction. The D whLch appears in equations (38), (h4) and
(42) is always computed from the drag and roll reductions or estimated from
experience with the configuration under consideration and is not obtained
from Eq. (,4). The two values are compared in order to give an indication
of the quality of the yaw reduction. Insertion of known values of ý and v
would eliminate one and one V.• . The requirement that M' = 0 would then

eliminate the other V! . Finally an inspection of equation (36) shows that

a, - a2 when v - 0. Thus we see that the number of unknowns can vary from

six to ten. As a result of this fact three variations of the basic ten
unknowns yaw reduction have been coded for the Bell Relay Computer. They
are:

1. eight unknowns 2 reduction which uses fixed values of as obtained

from equations (44) and (45) and initial values of

2. seven unknowns reduction which uses fixed values of and the
I -

additional restriction that 1 + = is known,

3. six unknowns reduction which is based on the assumption of zero

spin and constant moment coefficient (M' - 0). For this reduction

$1 +~=0,~-a 2 3 nd d~-00- ' l

For certain rounds these bpecial reductions have proven to be superior to
the basic ten unknowns.

1 [3] uses the triangular square root method of matrix inversion while [84
advocates two methods which make use of the extensive symmetry of the normal
equations. ).or considerations of machine time we have found that most of
the time of computation is devoted to input, output, and formation of normal

. equations. As a result of this experience most of our recent work has used
essentially the Gaussian elimination method of inversion. It has also been
found that a floating binary point routine as described in [12] is of great
value and does not greatly increase machine time requirements,

2 When a variation of the eight unknowns yaw reduction was coded for the CPC
at the Naval Ordnance Laboratory, use was made of the symmetry by means of
performing all operations in the arithmetic of complex numbers . This was
possible because this reduction can be considered as a problem in four
complex unknowns.
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A::•ic:::ca, (Tricycle) Ya7 hoduction

Since it is extrenely difficult to reduce the yawIng notion of an
asyrz-ie�ra. m nd.ss..e -ritboi0-z knawe!; of the rolling notion, we will only
consider tie reduction of rounds for which a roll reduction has been rcr-
for-ýJd. It should be enphasized that equation (36) is cxactly correct
only wVen v is constant. it is,assumed that for small variations of v
when it does not get closc to ithe relation is Still valid. When v

varies near resonance occurs and equation (36)Yclearly is not valid.l

'Frcon the roll reduction we 'maw the change in V3 but not V30" The problem
then is to coipute 3 and K

3ý0 300

First all of the yaw points arc plotted and rotated through angle -(0 4 0).
This yields2

.-(e- )i (-a, + i)p - i(o-' 0 ) + i)pi(O .0 00 )

SSince e is linear or verr nearly linear, t~he result is an epicyclic motion

-about the point K• e I'3 (Figures 12, 13, 14t, Illustrate this process). It

30S2uin

is now easy to determine K30 and V30 since they are the polar coordinates of
the center of this epicyclic motion. The origin is moved to this point and
the points rotated back through the angle 9 - 00 !,It is now possible to per-

form the usual epicyclic reduction and so obtain the remaining parameters,

The tricyclic yaw differential corrcctiorts ron utine has been coded in two
forms on the Bell Rela.y C0mputer and is now being coded for the Ordvac. The
reduction as coded for the Ordvac will be a nine unn•oows problem formed by
combining the seven unknowns epicyclic yaw reduction with the two parameters
K3 0 , %30 of the tricycle arm. The two Bell Relay Cocmputer versions are eight

and ten vaimowns problems and were formed by combining the two tricycle para-
M.tcrs wi÷• tp slx uPVnr-n and eight amknowns epicyclic yaw reductions
respectively.

1 In order to reduce recent firinrs b; j. D. Nicolaides and T. C. MacAllister
for asymmetrical roundn. which go tbroagh resonance, use is being made of the
Exterior Ballistics Taboratory's Analog ~Copter in a fashion similar to
that described in L7] . Work iz beirZ d-one on this by J. Schmidt.

2 ThLS method was suggested býr L. -. *' A' 1st<r [15] .X4 for most tricyclic

models is oxtrerely omI w%- i-, r:-e*>ct-.
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SWERVE REDUCTIONS

The last bit of dynamic information which can be obtained from a free
flight range firing lies in the lateral motion of the missile. The equation
of motion, which the x and y coordinates of the center of mass of the missile
must satisfy, may be written in the form:

m(M + i) - (Fx + V) - ig - ma0  (50)

where Fx is x component of the aerodynamic force

F is y component of the aerodynamic force7

g is acceleration due to gravity

a0 is the Coriolis acceleration

Tf" we reolve the aerod--,..., for-e Gong th- x and y r5.^ -. . e...ber.ing

that the small angle between the 1 axis and z axis is X + i and that theu
2-3 axes are the negatives of the xy aes when this angle is zero:

F +iFy= -(F2 +iF) + F (X+i + 4) (51)

But F1 is defined by the relations:

22 -A - KD (52)

In [1] and [9] the following equation is derived for the, sy7nmetrical
missile:

)'" L (": L + ivj'F) X" + (•J.XF + iJs) ýt + Y ; 0 (5,3)

where y is a small contribution of gravity.

The insertion of the term JN6X e io in Eq. (53) for the asymmetric missile

does not effect the approximation X' - 0.

Using relations (34) (52) and (53) and converting from K 's to J 's where
necessary we can rewrite (51) in the form: i i

F+ iFs Y L - ivJF)) + (-JS + ivJX)'X'- ~JN2 X•( e + u (X + ii) (54)

i The standard value of g at the Aberdeen Proving Ground is 32.152 ft/sec.2•
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The usual change of independent variable is now made

X" + W)" " (x iy)d
Uu u

(U ) () - (x + i•) u • (55')

+ i'y,, (u)2 (x" + iy") + + ) i (56)
u

Substituting (54) and (56) in (50),
x1" + , JY i ud a ( 7

(JL - 1VJF)' + (-JS + iJxF)x' " JN • e - - 2  (57)

IntegratingI

x +y x'+y ' P P
+. 0 + 0 - -p J (JL - ivF)X dp dp +f (-4J+ivJ.,)(XA)dp

A d
0 0

whereyG - gd2 f u'2 dpdp

Xc + iyC a•P• a~d 2 dp.dp

F~00

If we assume that the drag coefficient is constant,

2 -2 e2 JDp

.yG- gdu2 L (2JD) 2  gd 2u 2  (6D)

1 The variation of v in the product WJxF was neglected.

U
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It now remains to compute the Coriolis acceleration a0 . It is shown

in most mechanics texts that the vector = 2 x -t where i is the angular

velocity of moving axes with respect to an inertia se44of axes and u is the
missile's velocity with respect to the moving axes. J-(is therefore a vector
directed along the earth's axis of rotation with magnitude,.A , of 2n radians
per day or 7.2 72 x 10-> rad/sec. e new introduce an auxiliary coordinate
system formed by the unit vectors t' e2 ' ' located at the gun and so

orientated that t2 points up and e3 points north along the meridian of

longitude. If V is the angle between t3 and the ranges' z-axes for which

positive orientation is defined to be from e3 to e1 and the unit vectors

along the ranges' axes are denoted by 3, t andt respectively,
y z

e2  ey

3 : =e, cos' -'e, sin (61)

e1 =e 2 xe 3 -excosr+esin

Now u u ez (62)

andfA -A [Lj Cos + +e2 sinj (63)

where 0 is the latitude taken aspositive for the Northern hemisphere

.. t. 2 A 4
a2 oesz Cos e - sin cos 9 + ey(sin e xuet

- 2u'L (sinhicos 0 ey + sin e (64)

Using our complex notationS

a . 2uA (sin e + i cos e sin $1) (65)

For Aberdeen Proving Ground 9 a 39° 26'1 The ranges are so orientated
that IF is 2700 for the Aerodynamics Range and 1680 for the Transonic Range.

2
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' . x yc * -Y 2 Q.C d2 (sinL + i cos f sin * ) u"I dp. dp

C~~ Jpjy 0 3  ~2 4
e flU- (sin 0 +icos 0 sinr )(p2 +- - ) (66)

Evaluation of the quartic terms shows that they may be neglected in

Eqs. (60) and (66). It re.mains now to consider the three integrals involving

aerodynamic coefficients and yawing motion. We will first consider the

epicyclic yawing missile and then the more general tricyclic yawing missile.

Epicyclic Swerving Motion (K3 = KNE X . 0)

If we insert eq. (36) in eq. ('58); assume 2 - 0, which implies

v, 0 and integrate, the result may be written as

X CC + '(Y + YC .-+ G

d =p + Qp + RI2K1 e (-c. + iV 0o)p

(XD + Y

+ R2K2 e(-2 + iVO)p + d--

where P and Q are complex constants depending on initial conditionsl

Ri =Ril + IRi2

Ril ail il J) 7"

- 2) 2v ai

"-2,' r2jL' + 7 2 2 UF

(Vio + a) (io + a,-)

ci. v*'i

+ -'2 - s + 2 +' 2  - JXF
vio + di Vio 1 Ci

Ri2 =a12 J L + bi2 JF + c12 is + di2 JXF

1•' +2 2i) i

•v(io

1 The lower limits of the integrals of Eq. (58) together with Xo are

absorbed by P and Q.



+ - , 1 .. s - , ,2 + 0• ' • •
o0 + ""io i a

p p
"XD'iYD "-f J . " •-JZ) f dp dp + J ('s + iv 'R dp (Drift)

0 0 0o

If we insert the approximation - for 1R' neglect thev s
Mu A up

single integral and remember that for constant D and JD' v - V • and

u U u e"JDp, the drift components may be computed to be I

p p p p

Fegd o 2 D +2J "3)

00 4 0 J Jpd -J+3

-2o2(D+.JD)p . .._ 0 A(••22. D g. 2D
au-. JF dpdju-JFM dp dp JF 2A(P 3 pMu Auo . Huo

0 0 0 0 (68)

Jf JL and JF are estimated, xD and %D may be computed and subtracted,

from x and y respectively. This then makes Eq. (67) a linear equation in
eight unknowns to be fitted to the measured values of x and y at each station.
This may be done by the standard least squares technique 2 J , and J'F m.ay be

computed from Ri, inserted in the formulas for xD and YD and the 1rocoss

iterated. An iteration, however, is not usually necessary.

1 In almost all firings where drift is measurable, D 0 JD - JA i k-

Use of this approximation wilU simplify (68).

.2 In this calculation the i terms which appear in the exponentials are

replaced by i(Wio'~iP 9 This inconsi~stency in the handling of the

Is was felt to yield a better approximation to the true motion-. See page

635 of Ell or page 20 of [21.
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For missiles possessing a fairly high rate of roll, l is usually rather
large and for these missiles the size of its associated swerving motion JRKjj
is quite small and poorly determined. But a knowledge of R alone puts us
in the position of having to solve two equations in four unowrns'. The situa-
tion is improved by the fact the d2 1 and d2 2 are quite small and hence JXF can

be neglected. Since c 2 1 and c 2 2 are usually small, JS can also be neglected.

In those cases where c2 2 is not small enough to neglect is' an estimate of is
is inserted. The remaining set of two equations in two unknowns is then solved
to yield values of KL and K

F
For missiles which have been launched with no roll an important simplifi-

cation is possible. For these missiles it can be seen from Eqs. (35) that
1, and a- a2 . The additional assumption M' = 0 provides the result

that 0 0. Insertion of these relationd in the definitions of R now

results in

R, -R2,(69

or Rll -R21 - 12 '2ý7 2

2•,i0 ~(70)

""+-R.-"22  + 22 L 2 + 2 S

By means of Eq. (69) the swerve curve fitting of Eq. (67) is now reduced to
one involving six unknowns .I Both the six and eight unknowns swerve re-
ductions have been coded for the Bell Relay Computer although only the eight
unknownsswerve reduction has been coded for the Edvac.

Although the eight unknowrsswerve reduction just described has been
employed successfully for some years, it possesses three undesirable features.
They 'are:

1. The reduction is so- formulated that the contribution of the higher¶ frequency mode of the yawing motion to the swerving motion has to be neglected.
2. In order to correct for drift it is necessary to guess a KL and a •.

It would be desirable to use drift in the evaluation of KL and K.

3. The effect ofI 0 is handled in an inconsistent manner.

I Note also that for no spin xD P YD 0.
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It was decided to eliminate features (1) and (2) by placing equation
(67) in a form in ,hich the aerodynamic coefficients themselves and not the
intermediate Riis are the unknowns. In doing this it was further decided to

neglect the effect of KF. Finally the inconsistent treatment of non-zero

is was corrected by means of an asymptotic series expansion of the swerve

integrals.

In order to obtain this expansion we will consider the integralF e~dp
where P" is constant. If this integral is integrated by parts,

fePdp -J dp
ff

epp

+ _-. + f ' 2 P1 dp (• + p" 71)
p13

The neglection of the remainder term is valid for small A- since its mag-

nitude is approximately 3 P,1 2 1 . An examination of the process of

generation of this series shows that the magnitude of the remainder term
at•en InIeP

at the nth step is approximately 1 " 3 " 5 0(2n - 1) -7S 1 From

this we see that forf 1 the remainder will first decrease and then

increase without bound. This property is a characteristic of an asymptotic
series. tt

For the small L usually encountered however, Eq. (71) is a good

approximation to the integral. If we integrate (71) again, neglecting squares
Of

f 3

jIeP (Pt + 3P" P'-4) (72)

-- I
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By means of (71) and (72), (58) can be written as:

x + x C + i(y + YG + YC)d P + QP + JL SI1 + Vo JF S2 + JS S3 (73)

d

whereI

SlK.jelfp-2 + 3 •"It-h + K e [P21. + 3+

Sl [At -2 A -4] P2 [2t ,-2 "11 A-2
S2Ke P, + 3 P, P, +Ke + 3 - 4]2Q +J

S 3 K, el + Pi P,3 + K2 e 2  [P2 2 ~p3

, 2
9, - zap + i( o0p + Vi~.

A ~A 2

The definitions of the S. Is together with equation (68) show that they are
known functions of p. Eq. (73) is then a linear equation in seven unknowns
and can be fitted by the usual least squares method. This seven unknowns
swerve reduction will be referred to as the LFS swerve reduction. For certain
"rounds either JF or JS can be omitted thereby providing us with LS and LF

swerve reductions respectively. The LF reduction has been particularly suc-
cessful and is the standard epicyclic swerve reduction coded for the Ordvac.
The IS swerve which for zero spin is equivalent to the six unknowns swerve
has-been coded for the Ordvac also. Both the LFS and LF swerve reduction
have been programmed for Bell Relay Computer.

Tricyclic Swerving Motion

If the complete Eqs. (36) and (58) are combined, the following expanded
form of Eq. (67) for non-zero constant spin may b'e obtained.

x + XC + x• i(y + YG + YC + YD) ( + ieo)P

d + (-a2 + ivýo)p + R K e
R2• + RK3-7 (74.)

XD gdo p2 D+2JD

1 From Eq. (68) we see that Ld is - -Mo (_ + -D-" p3) and, hence, is

independent of JL" This term comes fromf ).R dp dp. A similar obser-
vation applies to yD

voJFd
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where R (JL- .477- +)'V + JF) + V
3 3

Eq. (74) presents a routine ten unknowns curve fitting problem for least
squares. This has been coded for the Bell Relay Computer. 1

For zero spin Eq. (74) is invalid. A second reduction (L-L) has been
coded for the Bell Relay Computer for use on tricyclic rounds with zero or
near zero spin, (Ivlj <o1-4). This reduction was derived on the additional
simplifying assumption that all the aerodynamic coefficients other than JL

may be neglected. The near zero constant spin assumption allows the re-

placement of eis in Eq. (36) by

e a (e 3e' + -. 1. + i(Vp . +

For the integration, only the first term of Eq. (72) is used and the drift
terms are omitted.

x + x, + i(y + Yr + YC)
P + qp + J S" + J 4 (75)

where P I C2

* il e K2 e

-+ S

1 e ivp

ivp)

s4 [V2 e -( + iVp)]

-K 3 e [ 2 + - - . + ( 3 3.5 5 7

Since it ias felt that JLK3 is well determined by the swerving motion, both

JL, Iare solved for in the hope that their ratio would provide a correction

to K3'

1 Here avjain iV 0'p terris appearing in the exponentials are replaced by

i W3 . oil+V 2
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Finally we will describe the tricyclic swerve reduction which is being
coded for the Ordvac. This reduction will be based on the ideas which were
developed in the various swerve reductions already discussed. It has been
decided to reduce the four degrees of freedom expressed by R1 and R2 of

Eq. (74) to two, namely JL and JS' revise the tricyclic term so that zero

spin is no longer a special case and incorporate the full corrections of
non-zero O's. With these aims in mind the following equation may be derived.

x+x+ +(y +Y ) P + Qp + JL S + J S3 + R 3 S4 (76)

d

where the symbols are already defined for Eqs. (73) - (75).

It can be shown that the major component of the imaginary part of R3 arises

from J•. Both this coefficient and JS were omitted from the L-L swerve.

The reduction will-probably be expanded to handle slowly varying spin by the

insertion of vop + 0p2 for v in S This will be useful for finned missiles

over the portion of trajectory for which v is within 5% of steady state.I This
now completes our discussion of the individual reduction processes.

It is interesting to consider the relative time requirements of the com-
puting machines for the various problems. This comparison is provided by Table I.
Although the Bell Computer is rather slow, it has the important feature of being
practically error-free.

1 The advantages of numerical integration for the calculation of S are being

considered. This is feasible when the problem is done on the high speed
Ordvac.
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TABLE I

A Bell Computer Time in Minutes

1. Drag Reduction 4 unknowns 15-25

2. Yaw Drag Reduction 5 unknowns 90-150

3. Roll Differential Corr. 4 unknowns 60-90

4. Epicyclic Yaw Diff. Corr, 6 unknowns 7n + 4o

5. Epicyclic Yaw Diff. Corr. 8 unknowns 9n + 50

6. Epicyclic Yaw Diff. Corr. 10 unknowns

a. FLrst iteration 12n + 65
b. Later iteration iOn + 65

7. Tricyclic Yaw Diff. Corr. 8 unknowns 14n + 55

8. Tricyclic Yaw Diff. Corr. 10 unknowns

a. First iteration 16n + 5o
b. Later iterations l4n + 50

9. Epicyclic Swerve 6 unknowns 6n + 30

10. Epicyclic Swerve 8 unknowns

a. Short'* 7n + 70
b. Long 12n + 70

11. LF Swerve 6 unknowns

a. Short 20n + 30
b. Long 25n + 30

12. LFS Swerve 7 unknowns

a. Short 23n + 40
b. Long 28n + 40

13. Tricyclic Swerve 10 unknowns 6n + 40

14. Tricyclic Swerve (L-L) 6 unknowns iOn + 30

* All times are for one run only* n is the number of stations in the round,.

** Short swerve reductions can be performed only when the yaw reduction has
been done on the Bell Computer.

36

______________________________"__+_________"

- + -



TABLE I (Con't)

B Edvac Minutes

1. Epicyclic Yaw 10 unknowns 2.5

2. Epicyclic Swerve 8 unknowns 6.6

Due to delays of tape handling the usual time for two iterations of yaw
plus swerve is about-15 min.

C Ordvac•

1. Center of mass reduction (4n + 30) sec.

2. Drag Reduction 4 unknowns 2 min. (max.)

3. Roll Diff. Corr. 4 unknowns 3 min.

4. Epicyclic Yaw Corr. 10 unknowns 5 min.

5. Epicyclic Swerve (L-F) 6 unknowns 4 min.

The usual time for two iterations of yaw plus swerve is about twelve minutes.

*• All reductions on the Ordvac employ the binary point routines described
in [12]

3
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CRITERIA FCR QUALITY OF RESULTS

In conclusion we will consider the various ways in which the quality of
the results of the reductions described above may be estimated. There are

* essentially three ways by means of which this can be done.

First the sizes of the residuals of each fitted curve may be compared
with the accuracy of the corresponding instrumentation. This comparison will
reveal computational errors and identify rounds for which the particular theory
is inappropriate but will tell very little about the accuracy of determination
for individual coefficients.

The second method describes the internal consistency of the measurements
and involves the. computation of the statistically defined standard errorsI of
each aerodynamic coefficient. Briefly, if Xi is a parameter of one of the least

squares fits described above, it can be shown that EX•, the standard error in Xi,
i

may be computed by the relation:

where -XnR (standard error of fit)n-r

-residuals of fit

n number of measurements

r number of unknowns

Aij, elements of the inverse of the matrix formed by the coefficients of

the least squares normal equations.

If an aerodynamic coefficient is a function f (X1 , X ) of two of these parameters
the following relation is used to calculate the coefiicient's standard error:

2af + (Lf 2 2I'M 1 af (78)2f(l' X2) = Xl Xl aX X2 + a X 21 X1 X2

1 1 2X2  (72)

where E XI X2 -A 1 2£
2 .A 21 62

The generalizations of Eq. (78) are clear.

1 The commonly used probable errors may be calculated by multiplication of
the standard errors by .6745.
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Experience has shown that the relative magnitudes of the errors for the
rounds of a program are quite useful. For example the usual size of errors
in K for bodies of revolution is about .03. Rounds which have errors in K M

which are double this are inspected with some care. The absolute magnitude
of statistical errors is usually much smaller than the round to round scatter
and so is given little weight.

The third and most effective approach examines the effect which the
aerodynamic coefficient in question has on the motion and determines criteria
for the motion which must be satisfied in order that this effect be measurable.
For example, in order to determinate the drag coefficient the observed de-
celeration of the missile must be measurable in terms of timing accuracies of
5/8 g sec., and distance accuracy of either ,015" for the aerodynamics range
or .01' for the transonic range. This distinction is quite important. If an
extremely heavy missile were fired with no yawing motion and a drag reduction
performed, the residuals of fit would quite probably be very good, The stan-
dard error for Kb could be quite reasonable and yet the KD would be meaning-

less due to the fact that the actual deceleration would be smaller than could
be measured accurately. A second example could be constructed from the roll
reduction of a missile whose rolling velocity is within 5% of steady state
throughout its observed flight. The fit could be excellent and the calculated
value of Cl completely worthless!

Since the analyses of the drag and roll reductions have already been made
in [4h and [10] respectively, we will only discuss criteria for the yaw and
swerve reductiors.Experience with the graphical portion of the yaw reductions
shows us the I0K1C and K20 must be of reasonable size. Since KM depends primarily

on and V2 and these are quite well determined for' K 's over five times the

experimental error of .001 rad, the criterion for KM is that K0 - .005 and

K > .005 If a spin reduction has been performed, only one of the K.o 's need
2be larger than .005 while O'for the other is computed from Eq. (36). Since II- and T

depend on the shrinking or growing of the two arms, the requirement on the
amplitudes of the two modes must be strengthened. Experience has'determined
that the lower bound of .007 for the amplitudes of both modes is sufficient
for reasonable determination of H and T.

The criteria for swerve reductions requires a little more algebraic work.

First we must define measures of the effect of KL, KF and KS on the swerving

motion. In Eq. (67) only R2 need be considered for spinning bodies of

revolution. For this case the lift swerve (R2 )L and Magnus swerve (R2 )LF

are defined by the relations:

(R)L - JL K2 0  a21
2  + a2 2 (79)

(R2)F F JF K2 0  212 + b2 2  (80)

39



We then require tlat(R2 )L or (R2 )F be five times the ox<perimental accuracy in

calibers in order that the corresponding coefficient be determined. (This
transverse distance accuracy for the Transonic Range is .01 ft. while for the
Aerodynamics Range it is .015 in.) For- the six unknowns swerve described by
Eqs. (69) and (70), the following definitions are natural:

(R)L a JL 2_,[K20 * a2 1  * a22
2  (81)

2 Vý +K 2 2 + a22(2

(R)s - JS IK 1 0o K202 * VC212 + c22 (82)

4 Even simpler definitions are possible for Eq. (73)

SL M j Ls~ )l = L -j 2I7 (83)
average -

SF=vJ VI2t jo~ (84&)average =

"s a (I•s ?-) = - •j 3  (85)
average

n

where summations are over all stations and n is the number of stations1 . The
criteria for (R)L, (R)s, SL, SF, SS is the same as that for (R2 )L and (R2 )F.

The tricyclic swerve may be treated in the same manner.

1 Since TISil 2 appear as a coefficient in the normal equations, definitions

(83) - (85) are especially convenient.
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TABLE OF SYMBIOSI

A Axial moment of inertia; constant in Roll Eq. (3l)

Aij Element of inverse of normal matrix for least squares [Eq. (77)]

B Transverse moment of inertia; constant in Roll [Eq. (31)]

C Constant in modified roll equation [Eq. (31')]
D - JD~m• J. "

A
D0 m atM MDo - t M MO

A DoD=D+0

V
E Constant in modified roll equation [Eq. (31')]

(F1,F 2,F3) Aerodynamic Force vector in missile coordinate system

(Fx,FyFz) Aerodynamic Force vector in range coordinate system

dd9= [J)+ k_2 JH - ';
U

HJL - J
Ii(P) Integral defined for Eq. (26)

I2(P) Integral defined for Eq. (26)

pd3 K
Ji i -m- Ki

- [v~l A) jNE -kf 2

KA Spin deceleration moment coefficient

KA Spin producing moment coefficient
0

OD Drag force coefficient (trajectory drag)

KbA Axial drag force coefficient
Y • 2- Yaw drag coefficient

DM Slope of Mach number drag curve

K F •Magnus force coefficient

1 A few symbols unfortunately have two meanings. These are separated by semi-
colons. The definition which applies may easiay be determimed. by the context.
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TABLE OF SYI.BOLS (Con't)

K Damping moment coefficient
HI

KL Lift force coefficient

YK Overturning (righting) moment coefficient

Asy-'retrical moment coefficient

KN Normal force coefficient

K Asymmetrical normal force coefficient

I' Damping force coefficient

Magnus moment coefficient

'ýF Magnus force coefficient due to cross spin

KXT Magnus moment coefficient due to cross spin

Kio Amplitude of the ith mode of yawing motion

I'0
K K. e Vio

1 2.0

L Distance from missile's reference point to center of mass

SM= k22JM; or Mach number

(MIM 2 ,M3 ) Aerodynamic moment vector

P Constant in Eq. (58);, Pressure

SPW Vapor pressure of water

-Pd Pressure of dry air

Q Constant in Eq. (58)

R Residuals

Rij Expression defined for Eq. (67)

Ri Ri! + iRi 2

(RA2 )L,(R)L Radii of lift swerve motion for Eqs. (67) and (69) respectively

(R2 )F Radius of Magnus swerving motion for Eq. (67)
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TABLE OF SY14BOLS (Con't)

(R)s Radius of damping force s•-•o"ving motion for Eq. (69)

RX, Rl Constants in Eqs. (6) and (7)

S. Quantities appearing in Eq. (73)
F

SF Radius of ignus swerving motion [Eq. (83)]

LSL Radius of lift swerving motion [Eq. (83)]

t SF Radius of damping force swerving motion [Eq. (85)]

T = JL ' 2JT; Absolute temperature

V SVelocity of sound

VSD Velocity of sound in dry air

a,b Constants defined by D=(a + bM

a. Coriolis acceleration

a. Coefficient of drag equation [Eq. (21)]

a.. Quantities defined for Eq. (67)

b ij Quantities defined for Eq. (67)

(clc 2 ) x and y coordinates of horizontal spark

(ClC2) x and y coordinates of vertical spark

ci Quantities defined for Eq. (67)

d Diameter

dij Quantities defined for Eq. (67)

-- g -- * --. *

e1 , e2 , e3 Unit vectors along 1,2,3 axis on earth's surface

.ex, ey, eZ Unit vectors along x,y,z axi3 located on the range

9 gAcceleration due to gravity

k A Axial radius of gyration in calibers

44'

I2



TABLE OF SYMOIS (Cont)

k2 k2 Transverse radius of gyration in calibers

m K:ass

--2
m v 44-UN H2

(m,n,p) Direction cosines of missile's axis

n Number of observations

p-.

r Number of unknowms; quantity defined in Eq. (29)

s Steady state spin
1t A2 - s+SIP)

so Constants defined by kl JA D(s

u Missile's velocity

uI Axial component of missile's velocity

x,y, z Positional coordinates in range system

(XH1 ,O, zI), (O,yv, zv) Coordinates of plate measurements

(XRYRZR) Space coordinate of reference point on missile

(XcmycmZcm) Space coordinate of center of mass of missile

x and y components of drift

Th'x c x and y components of Coriolis deflection

Gravity drop

ac. Exponential damping coefficient of ith mode

p Exponent defined for Eq. (71)

A A
Pi - Pi + Dp

J~- I7bM0

y q2O V10l -q ~Eq. (29)J
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TABLE OF SYMBOLS (Con't)

6 =-&1 magnitude of yaw

Mean squared magnitude of yaw

S= n Standard error of fit

Standard error in i

61 Perturbation term arising from slowly varying spin [Eq. (35)]

71 arocos. - (a + 0') [Eq. (29)]
r

e Roll angle; latitude

X XH + i V . X2 + iX3

XH' XV' X21 X3 Components of yaw in radians along horizontal, vertical
1 and 2 axis respectively

-E Magnitude of asymmetry angle

XR Yaw of repose

S= 4 3 d + i 0 3 d n o n d i m e n s i o n a l c r o s s a n g u l a r v e l o c i t y

v • _•d nondimensional spin

A
V V

P "Pa + P w air density

Pa' Pw "partial densities" defined after Eq. (2)
$•i"~ i+~ 0op+ b orientation of i, the mode, in complex yaw plane

A ziýuth

'' lMagnitude of eartht s angular velocity

(m,, ,ý 3 ) w Missilefs angular velocity

Derivative with respect to time

( ) Derivative with respect to p

r-Y• Average or conjugate of complex quantity
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